Electronic correlations in functionalized graphene on SiC (T2)
Project description
Graphene is an all-surface material. Its low-energy electrons can be tuned from massless Dirac fermions to flat band behavior upon strong charge doping. We intend to explore how this uniquely controllable electronic system can be utilized to establish functionalized graphene on SiC as platform to realize and control electronic correlation phenomena. We will combine computational firstprinciples and many-body approaches to understand the emerging electronic structure, when Mott insulating and superconducting surface systems as well as heavily charge doping layers are brought in direct proximity to graphene. Overarching questions will be which kind of electronic correlation effects arise in the hybrid interface systems and how these respond to tuning knobs like charge doping, stacking, and generically atomic scale manipulations of the interface.
Composition of the project group
- Tim Wehling, project leader
- Siheon Ryee
- Niklas Witt
Project-related publications
Quenched Pair Breaking by Interlayer Correlations as a Key to Superconductivity in La3Ni2O7
S. Ryee, N. Witt, T.O. Wehling, Phys. Rev. Lett. 133, 096002 (2024)
Switching between Mott-Hubbard and Hund Physics in Moiré Quantum Simulators
S. Ryee, T. Wehling, Nano Lett. 23, 573-579 (2023)
Ab Initio Phonon Self-Energies and Fluctuation Diagnostics of Phonon Anomalies: Lattice Instabilities from Dirac Pseudospin Physics in Transition Metal Dichalcogenides
J. Berges, E. G. C. P. van Loon, A. Schobert, M. Rösner, T. O. Wehling, Phys. Rev. B 101, 155107 (2020)
Deconfinement of Mott Localized Electrons into Topological and Spin-Orbit-Coupled Dirac Fermions
J. M. Pizarro, S. Adler, K. Zantout, T. Mertz, P. Barone, R. Valentí, G. Sangiovanni, T. O. Wehling, npj Quantum Mater. 5, 1 (2020)
Introducing strong correlation effects into graphene by gadolinium intercalation
S. Link, S. Forti, A. Stohr, K. Küster, M. Rosner, D. Hirschmeier, C. Chen, J. Avila, M. C. Asensio, A. A. Zakharov, T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, U. Starke, Phys. Rev. B 100, 121407(R) (2019)
Internal screening and dielectric engineering in magic-angle twisted bilayer graphene
J. M. Pizarro, M. Rösner, R. Thomale, R. Valentí, T. O. Wehling, Phys. Rev. B 100, 161102(R) (2019)
Manifestation of nonlocal electron-electron interaction in graphene
S. Ulstrup, M. Schüler, M. Bianchi, F. Fromm, C. Raidel, T. Seyller, T.Wehling, P. Hofmann, Phys. Rev. B 94, 081403(R) (2016)
Wannier function approach to realistic Coulomb interactions in layered materials and heterostructures
M. Rösner, E. Şaşioğlu, C. Friedrich, S. Blügel, T. O. Wehling, Phys. Rev. B 92, 085102 (2015)
Optimal Hubbard Models for Materials with Nonlocal Coulomb Interactions: Graphene, Silicene, and Benzene
M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013)
Strength of Effective Coulomb Interactions in Graphene and Graphite
T. O. Wehling, E. Şaşioğlu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, S. Blügel, Phys. Rev. Lett. 106, 236805 (2011)
Orbitally controlled Kondo effect of Co adatoms on graphene
T. O. Wehling, A. V. Balatsky, M. I. Katsnelson, A. I. Lichtenstein, A. Rosch, Phys. Rev. B 81, 115427 (2010)
Tim Wehling
U Hamburg
+49 40 42838-2916
twehling@physik.uni-hamburg.de
https://www.physik.uni-hamburg.de/th1/ag-wehling.html