Transport properties of intercalated graphene on the atomic scale (E3)

Project Description

This proposal is part of the DFG research unit FOR5242 ”Proximity-induced correlation effects in low dimensional systems”. The specific goal of this project is to characterize electronic and transport properties of epitaxial and intercalated graphene on the atomic scale. To this end, we will analyze the structural and electronic properties by STM and STS and focus especially on local transport properties by scanning tunneling potentiometry. Combining the characterization of local, atomic scale properties with the results from other projects, we aim to develop a comprehensive understanding of proximity-induced effects including strong correlations in graphene that allows to explore the perspectives of tuning the graphene/substrate interface to control electronic and transport properties.


Composition of the project group


Project-related publications

High mobility epitaxial graphene on Ge/Si(100) substrates

J. Aprojanz, P. Rosenzweig, T.T. Nhung Nguyen, H. Karakachian, K. Küster, U. Starke, M. Lukosius, G. Lippert, A. Sinterhauf, M. Wenderoth, A. A. Zakharov, C. Tegenkamp, ACS Appl. Mater. Interfaces 12, 43065 (2020)

DOI-Link

Substrate induced nanoscale resistance variation in epitaxial graphene

A. Sinterhauf, G. A. Traeger, D. M. Pakdehi, P. Schadlich, P. Wilke, F. Speck, T. Seyller, C. Tegenkamp, K. Pierz, H. W. Schumacher, M. Wenderoth, Nat. Commun. 11, 555 (2020)

DOI-Link

A comprehensive study of charge transport in Au-contacted Graphene on Ge/Si(001)

A. Sinterhauf, S. Bode, M. Auge, M. Lukosius, G. Lippert, H.C. Hofsäss, M. Wenderoth, Appl. Phys. Lett. 117, 023104 (2020)

DOI-Link

Minimum Resistance Anisotropy of Epitaxial Graphene on SiC

D. Momeni Pakdehi, J. Aprojanz, A. Sinterhauf, K. Pierz, M. Kruskopf, P. Willke, J. Baringhaus, J. P. Stockmann, G. A. Traeger, F. Hohls, C. Tegenkamp, M. Wenderoth, F. J. Ahlers, H. W. Schumacher, ACS Appl. Mater. Interfaces 10, 6039 (2018)

DOI-Link

Magnetotransport on the nano scale

P. Willke, T. Kotzott, T. Pruschke, M. Wenderoth, Nat. Commun. 8, 15283 (2017)

DOI-Link

Local transport measurements in graphene on SiO2 using Kelvin probe force microscopy

P. Willke, C. Möhle, A. Sinterhauf, T. Kotzott, H.K. Yu, A. Wodtke, M. Wenderoth, J. Carbon 102, 470 (2016)

DOI-Link

Spatial extent of a Landauer residual-resistivity dipole in graphene quantified by scanning tunnelling potentiometry

P. Willke, T. Druga, R.G. Ulbrich, M.A. Schneider, and M. Wenderoth, Nat. Commun. 6, 6399 (2015)

DOI-Link

Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H.C. Hofsäss, M. Wenderoth, Nano Lett. 158, 5110 (2015)

DOI-Link

Long-range Kondo signature of a single magnetic impurity

H. Prüser, M. Wenderoth, P.W. Dargel, A. Weismann, R. Peters, T. Pruschke, R.G. Ulbrich, Nat. Phys. 7, 203-206 (2011)

DOI-Link

A versatile high resolution scanning tunneling potentiometry implementation

T. Druga, M. Wenderoth, J.Homoth, M.A.Schneider, R.G. Ulbrich, Rev. Sci. Instrum. 81, 83704 (2010)

DOI-Link

Martin Wenderoth
U Göttingen
+49 551 39-29367
martin.wenderoth@uni-goettingen.de

https://www.uni-goettingen.de/de/mitglieder+/+alumni/569027.html

Logo TU Chemntiz Logo U Regensburg Logo U Hamburg Logo U Göttingen Logo PTB Logo MPI für Festkörperforschung