Proximity induced superconductivity in graphene on SiC by intercalation (E1)
Project Description
Epitaxial graphene on SiC, which can be grown with high quality on an insulating substrate, provides excellent opportunities for applications as well as fundamental studies of graphene properties. The development of intercalation of different species into the interface between the SiC substrate and epitaxial graphene has greatly expanded these opportunities. In particular it opens an avenue for tailoring graphene properties by proximity coupling. In this project we will use the concept of intercalation to investigate the proximity coupling of epitaxial graphene to correlated states. In particular we will investigate (i) proximity induced superconductivity in graphene implemented by intercalated superconducting layers between SiC and graphene and (ii) the proximity induced interplay between Mott-Hubbard states of intercalated atomic superlattices and the overlying graphene.
Composition of the project group
- Thomas Seyller, project leader
- Philip Schädlich
- Susanne Wolff
Publications
Vertical structure of Sb-intercalated quasifreestanding graphene on SiC(0001)
Y.-R. Lin, S. Wolff, P. Schädlich, M. Hutter, S. Soubatch, T.-L. Lee, F.S. Tautz, T. Seyller, C. Kumpf, F.C. Bocquet, Physical Review B 106, 155418 (2022)
Silicon carbide stacking-order-induced doping variation in epitaxial graphene
A. Sinterhauf, G. A. D. Momeni Pakdehi, P. Schadlich, T. T. N. Nguyen, A. A. Zakharov, S. Wundrack, E. Najafidehaghani, F. Speck, K. Pierz, T. Seyller, C. Tegenkamp, H. W. Schumacher, Adv. Funct. Mater. 30, 2004695 (2020)
Quasi-Freestanding Graphene on SiC(0001) by Ar-Mediated Intercalation of Antimony: A Route Toward Intercalation of High-Vapor-Pressure Elements
S. Wolff, S. Roscher, F. Timmermann, M. V. Daniel, F. Speck, M. Wanke, M. Albrecht, T. Seyller, Ann. Phys. (Berl.) 531, 1900199 (2019)
Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC
M. Kruskopf, D. Momeni Pakdehi, K. Pierz, S. Wundrack, R. Stosch, T. Dziomba, M. Gotz, J. Baringhaus, J. Aprojanz, C. Tegenkamp, J. Lidzba, T. Seyller, F. Hohls, F. J. Ahlers, H. W. Schumacher, 2D Mater. 3, 41002 (2016)
Robust phonon-plasmon coupling in quasi-freestanding graphene on silicon carbide
R. J. Koch, S. Fryska, M. Ostler, M. Endlich, F. Speck, T. Hänsel, J. A. Schaefer, T. Seyller, Phys. Rev. Lett. 116, 106802 (2016)
Polarization doping of graphene on silicon carbide
S. Mammadov, J. Ristein, R. J. Koch, M. Ostler, C. Raidel, M. Wanke, R. Vasiliauskas, R. Yakimova. T. Seyller, 2D Mater. 1, 035003 (2014)
Buffer layer free graphene on SiC(0001) via interface oxidation in water vapor
M. Ostler, F. Fromm, R. J. Koch, P. Wehrfritz, F. Speck, H. Vita, S. Böttcher, K. Horn, T. Seyller, J. Carbon 70, 258 (2014)
Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces
M. Ostler, I. Deretzis, S. Mammadov, F. Giannazzo, G. Nicotra, C. Spinella, T. Seyller, A. La Magna, Phys. Rev. B 88, 085408 (2013)
Origin of doping in quasi-freestanding graphene on silicon carbide
J. Ristein, S. Mammadov, T. Seyller, Phys. Rev. Lett. 108, 246104 (2012)
Highly p-doped epitaxial graphene obtained by fluorine intercalation
A. L. Walter, K.-J. Jeon, A. Bostwick, F. Speck, M. Ostler, T. Seyller, L. Moreschini, Y. S. Kim, Y. J. Chang, K. Horn, E. Rotenberg, Appl. Phys. Lett. 98, 184102 (2011)
The quasi-free-standing nature of graphene on H-saturated SiC(0001)
F. Speck, J. Jobst, F. Fromm, M. Ostler, D. Waldmann, M. Hundhausen, H. B. Weber, T. Seyller, Appl. Phys. Lett. 99, 122106 (2011)
Thomas Seyller
TU Chemnitz
+49 371 531-32898
thomas.seyller@physik.tu-chemnitz.de
https://www.tu-chemnitz.de/physik/TEPH/mitarbeiter.php